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The Epoch of Mapping
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The Epoch of Mapping

TES Dust, Clouds, Vapor
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{From Boynton, et al., 2008, in The Martian Surface: Composition, Mineralogy, and Physical Properties,
(J. F. Bell, ed.), p. 105-124, Cambridge University Press.)
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The Epoch of Mapping

TES Dust, Clouds, Vapor
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The Epoch of Mapping

TES Dust, Clouds, Vapor
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The Epoch of Mapping
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The Epoch of Mapping

uds, Vapor
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Over a decade of orbital
observations provided an amazing

wealth of information that
revolutionized Mars science.
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(J. F. Bell, ed.), p. 105-124, Cambridge University Press.)
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Epoch of Mapping: Climate Science

Atmospheric thermal structure plus derived balanced wind
— Thermal tides, waves
— Effect of dust on temperatures
— Inferred wind structure (zonal jets)
Water vapor/cloud climatology
— Column abundance
Dust
— Column abundance and limited vertical structure
Surface boundary conditions for climate and mesoscale modeling
— Topography
— Thermal inertia
— Albedo
No surface measurements since Viking

First steps: Characterization of what is there



The Epoch of In Situ Geology
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MERS: Evidence of Past Water

VNS ATNESR

-

« Hematite concretions

! The Mini-Thermal

| Emission Spectromter
| found high amounts of
| sulfate.

& The Mossbauer
spectrometer identified
g the mineral jarosite that
~ . contains OH.
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MERS: Evidence of Brines and Evaporites
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« Higher concentrations of sulfur and bromine than nearby patch of
soll.

« Anearby rock similarly has extremely high concentrations of sulfur,
but very little bromine.

- Element fractionation typically occurs when a brine slowly
evaporates and various salt compounds are precipitated in
seqguence.



Lessons from MERs

Liquid water was present on Mars over geological
time scales.

Consistent with subsurface infiltration of water and
with surface evaporites.

Crossbedding indicates presences of surface
water.

Mars likely had a habitable environment in the
past.
— How long ago and for how long?

— How did the climate evolve to its current water-
unstable state?

You really ought to carry a weather station on
every mission to the surface.



Phoenix — Polar Ice and Water

 Confirmed shallow surface ice.
 Perchlorates.
 Liquid water?

« Some evidence of water
exchange with regolith and
atmosphere over diurnal cycle.

Sol 8
14:45 LMST
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Phoenix — Polar Ice and Water

Confirmed shallow surface

Liquid water may be possible and |

stable on current Mars!!!
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L essons from Phoenix

Really interesting polar weather.

Liquid water?

* You really ought to carry a complete weather station on every
surface mission

Meteorological station

Surface
stereoscopic
imager _

N\

| descent ™
imager Microscopy, electrochemistry

[ Mars \ ’k
L and conductivity analyzer

Solar array

Robotic arm
Solar array

™ Thermal and
evolved-gas
analyzer

Robotic arm camera
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Topography and Mission Meteorology

Landing Sites on Mars
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Topography and Mission Meteorology

Landing Sites on Mars
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Topography and Mission Meteorology

Landing Sites on Mars
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Topography and Mission Meteorology

Landing Sites on Mars
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Topography and Mission Meteorology

Landing Sites on Mars
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Gale: A Region of Complex Topography With

Meteorological Instrumentation (REMS)

Gale Crater
(155 km diam)

MSL prowdes the flrst opportumty to Iook at strongly forced mesoscale meteorology
: ) o 3 : S Q’\_ LN \ "‘ N e o S5 S
ExoMars Workgmp -- Rafkin NASA
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MSL Science Payload

Mastcam — ChemCam REMOTE SENSING

Mastcam Color and telephoto imaging, video,
atmospheric opacity

ChemCam Chemical composition; remote micro-
imaging

CONTACT INSTRUMENTS (ARM)
MAHLI Hand-lens color imaging
APXS Chemical composition

ANALYTICAL LABORATORY (ROVER BODY)
SAM Chemical and isotopic composition, including

APXS ' organics
Brush MARDI . |
Drill / Sieves CheMin Mineralogy
Scoop
Wheel Base: 28m ENVIRONMENTAL CHARACTERIZATION

MARDI Descent imaging
REMS Meteorology / UV
RAD High-energy radiation

Height of Deck: 1.1m
Ground Clearance:
0.66 m

Height of Mast: 29m DAN Subsurface hydrogen

ExoMars Workshop -- Rafkin

28



o
N
<
O
—
©
>
~
(@l




Comparison of Galeto VL1 and VL2

Pressure evolution
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Synthesis of Observations and Models

* Observations validate models.
— Where do models do well and where do they do poorly?
— Specific measurements needed to identify cause of errors in models.

* Models simulate complex physical connection between
meteorological parameters.
— Can populate incomplete observational records.
— Can provide greater meaning/understanding/context.

* When properly validated, greater confidence may given to
model results at times and places without observations.



MRAMS Pressure vs. REMS Pressure
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Why such a large discrepancy at

Ls 907

* Dust?

 Poor GCM input?

e Poor physical
parameterizations?

Measurements from REMS are
largely unable to answer this
guestion.

Need to measure atmospheric

forcing in addition to
atmospheric response.
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MRAMS Ground Temperature vs. REMS Ground Temperature
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MRAMS Air Temperatre vs. REMS Air Temperature
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MRAMS Wind vs.REMS Wind
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Complexities that Cannot be Captured by a Single Station
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Night (2200 Local) Winds and Potential Temperature
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Cross-Sections: Wind and Potential Temperature (0410 Local)
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Warm, capping inversion at all seasons but Ls 270.

Warm air tends to override crater air mass at other seasons.
Strong downslope winds and wave activity along north rim at Ls 270
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LS 90 vs Ls 270

Xsec Grid 6 Ls 90 1825 S Xsec Grid 6 Ls 270 1825

I SE SRR 5000
A

B < [810]
S EXTESS s e d Ghp e £ £y >y 3 C 43_“

3000

1000

0
7__I o 5 * 7 Y ava 4 -..: N A r .-:; _7'-. ~ y l:,) - -) C% "\_
30 40 o (S“{mce (km 3 . 0C § ¢ 30 40 asan L)(“l(k ] 0 80

—20 2 4 6

GrADS: COLA/IGES GrADS: COLA/IGES

Wind speed (shaded)

[ —



27 March 2017

Cross-Sections: Vertical Wind

W and Temp. at 0410 Local Gale Ls O 2.5
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Wave activity clearly marked in vertical wind.
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Cross-Sections: Vertical Wind

W and Temp. at 0410 Local Gale Ls O 2.5

W and Temp. at 0410 Local Gale Ls 90

All this vertical structure is inferred through models
partially validated by observations.
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Wave activity clearly marked in vertical wind.
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Nocturnal Turbulence

Diurnal Air Temperature Cycle Diurnal Wind Speed Cycle
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Daily Meteorological Regimes Recorded in Temperature
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Lessons from REMS

First opportunity since Viking with met station! Keep it coming.
Complex topography drives interesting circulations.
First wind sensor failure problematic.
Second wind sensor failure extremely painful.
Accommodation
— Spacecraft perturbs environment. Accommodation matters.

— Complications with calibration.

— Need to design s/c with Met in mind, not as an afterthought. Met stations are difference than most other
instruments.

Sensor accuracy
— RH sensor response at cold temperatures
— Ground temperature sensor +/- 5K leads to larger uncertainty in upward IR flux.

— Uncertainties in retrieving winds/temp from thermal/dynamic modeling. More direct measurement
techniques?

Still largely in “characterization” mode. Need better/additional data to answer “why” and “how”.
— Need to measure forcing and response.



The "Forgotten Science” Intermission

* Focus on water/habitability led to neglect by NASA of other important science:
— Atmospheric evolution and upper atmosphere Nothing until Maven)
— Interior structure (Nothing until InSIGHT)
— Photochemistry (Mission interruptus on TGO)
— Present-day weather and climate cycles (No full surface Met until MSL)
— Aeolian processes (No dedicated investigations)
— Moons (No dedicated investigations)

* Limited preparation for future human exploration
— Dust properties (Nothing)
— Electrification (ESA DREAMS ExoMars Lander)
— Radiation (MSL-RAD)
— Resource utilization (MOXIE: 2020 Rover)
— Atmospheric environment (MSL REMS, 2020 Rover MEDA)



The Future: The Epoch of ?
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Mars Sample Return

Required by Decadal Survey.
— NASA can ignore and does so when it wants to, but not this time.

Congress and administration will not commit funding.

Current cost estimates of MSR are almost certainly wrong by a
large margin.

MSR requires multiple new and major technological
developments.

Highly vulnerable to single mission element failure.

High cost comes at expense of other Mars and planetary science
activities.



Lessons from Mars Sample Return

Mars Program had been on unsustainable trajectory for over a decade.

— No planning for the eventual crash (and burn).

— Don’t put all your eggs in one basket.

— Ocean Worlds beware!

Should not commit to an expensive multi-decadal program until there is strong government
commitment to fund.
Decadal survey doesn’t take into account politics.

— Desired science can conflict with rapidly changing funding and political realities.

— Need to have a clear escape hatch from Decadal Survey when the basis of recommendations is broken.
The idea that Mars could only be sold on the story of life and water became a self-fulfilling
prophecy.

— There is other compelling science.

— If you tell a lie long enough, people start to believe it.

— Cassini, New Horizons, Lucy,....none of these were sold using the life story!

MSR is not a science mission until samples are returned.

If you see a cliff coming, don’t close your eyes and accelerate. TURN.THE.WHEEL!



Future Missions on the Books

2018 InSight with TWINS

2018 TGO Science Phase
— Should provide major advance in photochemistry.
— Should nail methane abundance and variability.
2020 Rover with MEDA
— Many improvements over REMS.
— Some measurement of the “forcings”. (Primarily IR)
— Some of same uncertainty, accommodation, retrieval issues remain.

2020 ExoMars lander

2020 UAE areostationary orbiter (first true synoptic view of Mars)
2020 SpaceX Dragon...NASA may solicit payload!

2020 China TBD

2022, 2024,....200(2*N): NOTHING!
— NASA 2022 NeMO looks unlikely or with minimal to no atmospheric science
— Best atmos instrument for NeMO is sub-mm: overlap with TGO, mediocre wind measurements.



Advancing Climate Science

Objectives

Sub-objectives

A. Characterize the state of
the present climate of Mars'
atmosphere and surrounding
plasma environment, and the
underlying processes, under
the current orbital
configuration.

Al. Constrain the processes that control the present distributions of
dust, water, and carbon dioxide in the lower atmosphere, at daily,
seasonal and multi-annual timescales.

A2 Constrain the processes that control the dynamics and thermal
structure of the upper atmosphere and surrounding plasma
environment.

A3 Constrain the processes that control the chemical composition of
the atmosphere and surrounding plasma environment.

A4 Constrain the processes by which volatiles and dust exchange
between surface and atmospheric reservoirs.

B. Characterize the history of
Mars' climate in the recent

past, and the underlying
processes, under different
orbital configurations.

Bl1l. Determine how the chemical composition and mass of the
atmosphere has changed in the recent past.

B2. Determine the record of the recent past that is expressed in
geological and mineralogical features of the polar regions.

B3. Determine the record of the climate of the recent past that is
expressed in geoclogical and mineralogical features of low- and mid-
latitudes.

C. Characterize Mars" ancient
climate and underlying
processes.

Cl. Determine how the chemical composition and mass of the
atmosphere have evolved from the ancient past to the present.

C2. Find physical and chemical records of past climates and factors
that affect climate.

C3. Determine present escape rates of key species and constrain the
processes that control them.




Scientific Objectives,
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Future European Missions

* Not directly bound by Decadal Survey or U.S. politics.
* |sindirectly bound to U.S. in a cooperative Mars program.

Can and is ESA willing to go it alone?
Can and is ESA willing to take the lead?



Some Parting Thoughts

The international Mars exploration program has been a phenomenal success.

Some forgotten science is now in progress or planned.

Future progress on Mars atmosphere goals will require investigations that:
— Measure forcing and response to that forcing.
— Are accommodated on a s/c designed with forethought
— Have instruments with improved sensitivity and response
— Make missing measurements (wind!!!!)

NASA continues to push towards a (failed) Mars Sample Return Program
— The current NASA Mars Program is imploding.
— Even if it moves forward, fundamental deviation from the previous exploration pathways.
— Science will suffer either way.

NASA-ESA Mars missions will suffer from NASA MEP collapse.
Where do we go from here?

— NASA needs to come to grips with reality and make massive course correction: MSR is DEAD.
— International science community needs to:

* Reimagine a broad science and exploration pathway not solely dependent on life and water.
* Europe can help lead the way since it is unencumbered by the Decadal Survey.

— More of the same measurements are helpful, but getting to the point of diminishing returns.
* Atmospheric community would benefit from a consensus agreement on needed measurements, accuracy, etc. => Future workshop on measurement and strategy?
* Winds at the surface and aloft remain a nagging problem.
* Consider surface and from orbit.
* What is the ideal surface/orbital experiment that might be achievable as a long term goal?



