

Properties of Martian winds as determined from trajectory modelling of jettisoned spacecraft hardware

Mark Paton¹, Ari-Matti Harri¹, Hannu Savijärvi² (1) Finnish Meteorological Institute, (2) University of Helsinki

Contents

- Motivations
- Background
- Method
- Results
- Summary

Motivations

- Atmospheric model validation (column, mesoscale, GCM)
 - FMI / Uni. Helsinki PBL column model, Mars Local Area Model
- Independent verification of wind measurements
- Support scientific investigations
- Entry, Descent and Landing investigations
- MetNet

Support atmospheric model verification efforts (as well as science)

A.-M. Harri et al, The MetNet vehicle: A lander to deploy environmental stations for local and global investigations of Mars, Geoscientific Instrumentation, Methods and Data Systems Discussions, 6, 103-124 (2017)

HiRISE images of spacecraft hardware

Can start by verifying wind properties derived from HiRISE images with output from Mars Climate Database

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Distribution of EDLS hardware with no winds

EDL profile

- (a) Entry
- (b) Parachute deployment
- (c) Jettison heat shield
- (d) Activate radar and deploy legs
- (e) Jettison parachute
- (f) Touchdown

The heat shield has a relatively high ballistic coefficient impacting the surface further down range than the lander when there are no winds.

The parachute has a low ballistic coefficient tending to follow the lander down to the surface and landing very close when there are no winds.

Definition of distances in HiRISE images for the Monte Carlo analysis

- A. Location of parachute minus location of lander
- B. Location of heat shield minus location of lander
- C. Location of heat shield minus location of parachute

Locations of parachutes, heat shields relative to the various landers

Direction of approach for all landers normalised to 90°

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Method

Trajectory modelling

- Point mass, single body, 3 DoF global trajectory model
- Wind model verified against parachute descent data
- Trajectory simulations validated against spacecraft navigation data, i.e. altitude, position, velocity, acceleration etc

Approach

Case specific approaches used

Spacecraft	Hardware used for analysis	Method used
VL-1 < 1.5 km	Parachute and lander	Single layer, continuous profile
VL-2 < 1.5 km	Parachute and lander	Single layer, continuous profile
Pathfinder	-	
Beagle 2	First and second parachutes	Single layer
Spirit	-	
Opportunity	-	
Phoenix	Parachute, lander and heat shield	Double layer
Curiosity	Parachute, lander and heat shield	Double layer
Schiaparelli	Parachute and heat shield	Single layer

Monte Carlo analysis (simple example)

The example below shows the case for VL-1 below an altitude of 1.5 km.

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Results

Viking lander 1

Location> $312 ext{ E } 22.5 ext{ N}$ Season (Ls)> 97° Time of landing> $1613 ext{ LT}$

Comparison to Mars Climate Database (MCD) with default settings http://www-mars.lmd.jussieu.fr/mcd_python/

Viking lander 2

Location>134 E 48 NSeason (Ls)>121°Time of landing>0949 LT

Phoenix

Location>234 E 62 NSeason (Ls)>77°Time of landing>1600 LT

Seem to be consistent with winds aloft properties measured by Moores et al. (2010) for the Phoenix landing site

Curiosity

Location>137 E -5 NSeason (Ls)>151°Time of landing>1500 LT

Curiosity ground track

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Wind speed

Wind direction

Derived wind speed compared to averaged wind direction from MCD.

- The wind speed does not match the MCD data very well.
- Wind direction matches the MCD reasonably well.
- The Beagle 2 HiRISE image is consistent with a wind speed of 11 m s⁻¹ from the south-west. Similar wind speed as predicted in Rafkin et al. (2004) using MRAMS.
- Schiaparelli HiRISE image consistent with a wind of 5 m s⁻¹ from north by east.