

A reliable and lightweight dust sensor for Mars missions based on spectral and angular resolutions of local IR scattering.

METEO ExoMars20 Dust Sensor characteristics and performances

uc3m Universidad Carlos III de Madrid

Saariselka, Finland March 28th, 2017 Antonio de Castro Francisco Cortés Celia López uc3m | INFRARED LAB

Departamento Tecnología Electrónica

Measuring dust in Mars

Nadir measurements

Solar occultation measurements)profiles)

Sky brightness measurements

These techniques have always an "integrated" character

These measurements can not explore the surface

Measuring dust in Mars

Mathematical expression for n(r) is imposed in the retrieval model

 $r_{\text{eff}}~$ and ν_{eff} are the parameters to be retrieved

Measuring dust in Mars

Pathfinder Imager: sky brightness measurements at VIS filters (Tomasko et al. 1999)

Phobos: solar occultation $\lambda = 1.9$ and 3.7 μ m (Korablev et al. 1993)

A reliable and lightweight dust sensors for Mars missions based on spectral and angular resolution of local **IR scattering**. METEO EXOMARS'20 Dust Sensor, characteristics and performances

Particles in the micron-size range are expected

IR scattering is efficient for micron-size particles

A reliable and lightweight dust sensors for Mars missions based on spectral and angular resolution of local **IR scattering**. METEO EXOMARS'20 Dust Sensor, characteristics and performances

Scattering by a sphere: the Mie theory

Incident unpolarized plane wave

$$\begin{array}{c|c} & I_{s} \\ Q_{s} \\ U_{s} \\ V_{s} \end{array} = \frac{1}{k^{2} r^{2}} \begin{pmatrix} S_{11} & S_{12} & 0 & 0 \\ S_{12} & S_{11} & 0 & 0 \\ 0 & 0 & S_{33} & S_{34} \\ 0 & 0 & -S_{34} & S_{33} \end{pmatrix} \begin{pmatrix} I_{i} \\ Q_{i} \\ U_{i} \\ V_{i} \end{pmatrix}$$

$$S_{11} = \frac{1}{2} \left(\left| S_2 \right|^2 + \left| S_1 \right|^2 \right)$$

$$\begin{pmatrix} \mathsf{E}_{||s} \\ \mathsf{E}_{\perp s} \end{pmatrix} = \frac{e^{i\,k\,(r-z)}}{-\,i\,k\,r} \begin{pmatrix} \mathsf{S}_2 & \mathsf{0} \\ \mathsf{0} & \mathsf{S}_1 \end{pmatrix} \begin{pmatrix} \mathsf{E}_{||i} \\ \mathsf{E}_{\perp i} \end{pmatrix} \quad \begin{array}{c} \mathsf{S}_1 = \sum_n \frac{2\,n+1}{n\,(n+1)} \left(\mathsf{a}_n\,\pi_n + \mathsf{b}_n\,\tau_n\right) \\ \mathsf{S}_2 = \sum_n \frac{2\,n+1}{n\,(n+1)} \left(\mathsf{a}_n\,\tau_n + \mathsf{b}_n\,\pi_n\right) \end{array}$$

A reliable and lightweight dust sensors for Mars missions based on **Spectral and angular resolution** of local IR scattering. METEO EXOMARS'20 Dust Sensor, characteristics and performances

Averaging over the size distribution

A reliable and **lightweight** dust sensors for Mars missions based on spectral and angular resolution of local IR scattering. METEO EXOMARS'20 Dust Sensor, characteristics and performances

How many wavelengths?

How many spatial directions?

A reliable and lightweigth dust sensors for Mars missions based on spectral and angular resolution of **IOCAI** IR scattering. METEO EXOMARS'20 Dust Sensor, characteristics and performances

Simulating the DS

F

monochromatic radiant intensity (W/mm^{ϵ})

B

Dust Sensor v1 - MetNet Precursor Mission

Bi-spectral (B1: 1-3 μ m & B1: 3-5 μ m) Backscattering direction Not protective case <50 gr. Engineering by Spanish Industry: ARQUIMEA Ability to retrieve global dust concentration

DS METEO-Operation Fundamentals & upgrades

- Objective: to obtain representative parameters of existing particle size distribution models (r_{eff})
- Challenge: to isolate size and concentration parameters
 <u>Inverse problem: Many "small" particles will scatter equivalent signal levels than few big</u>
- **DS contribution:** Dust Distribution Retrieval Based on power balance between both: bands & angular signal (4 channels)
- Not quantitative calibration with dust, neither radiometric is required
- Based on pulsed IR source: digital lock-in amplifier for SNR improving

Final Envelope Design of DS in METEO - EXOMARS

Dust Sensor Electronics: PCB placement

Dust Sensor Electronics: EBB

Front View

Back View

Dust Sensor Accommodation: Features

MASS BUDGET			
Total mass (g)	Total mass + margin(g)	Margin (g)	
100,647	120,7764	20,1294	

POWER BUDGET	Idle	Sensing	ТМ		
5V line					
DS Total power (mW)	1369,38	1809,29	1665,99		
DS Total contingency (20%) (mW)	273,876	361,858	333,198		
DS Total power with contingency (mW)	1643,256	2171,148	1999,188		
+/-12V line					
DS Total power (mW)	510	1090	510		
DS Total contingency (20%) (mW)	102	218	102		
DS Total power with contingency (mW)	612	1308	612		
Total					
DS Total power (mW)	1879,38	2899,29	1825,99		
DS Total contingency (20%) (mW)	375,876	579,858	365,198		
DS Total power with contingency (mW)	2255,256	3479,148	2191,188		

Dust Sensor Accommodation: Power Profile

Power profile

EBB – Electronics Functional Test

Thanks for your attention

uc3m Universidad Carlos III de Madrid

